Complex Traits

controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane spanning domains.

: --.

analysis using the flowering gene in Arabidopsis has shown that the FRIGIDA and FLC genes, which are related to circadian rhythms in other species,

are most probably conserved in soybean and other plant species.

In contrast, some studies have reported that the photoperiodic mechanisms in rice and maize are complex and may involve additional factors.

The complete sequence of the Arabidopsis thaliana photoperiodic flowering gene has been characterized, and it has been found to be homologous to the GmGIs genes in soybean. Further investigations are therefore needed to understand the molecular mechanisms underlying the photoperiodic flowering response in rice.

A procedure to identify genes affecting maturity using soybean isolinestesters.

: --.

ygl8

The	comprehensive	study	suggests	that	the	YGL22	gene	is	a	potential	trait	marker
gene	in

per	plant	of	ygl22	were	not	significantly	affected.
The	results	indicate	that	YGL22	can	be	used	as	a	trait	marker
gene	in

hybrid	rice	production.

single

nuclear
gene,
temporarily
designated	YGL22.

Map-based
tcloning	and	sequence	analysis	suggested	that	the	YGL22
gene	is
tightly
coupled
to	the	YGL22

transcript	level	was	significantly
to	TIL22	than	that	in	the	control.

interesting	results	indicate	that	YGL22	may	play	a	role	in	the	regulation
to	flowering	time	under	LD	conditions.

et	al.	,		YGL22	is	associated

not	only	with
circadian	rhythms

but	also	with	other

biological	processes.

...3;

Fowler	et	al.	1999)	and	pea	(Hecht	et	al.	2007).

GI

is	associated
to	the	control	of

flowering	time	under

LD	conditions.

et	al.	,		in
the	nucleus.

Google	Scholar		23.Ellis	RJ.	Nuclear
dominance
to	chloroplast
development.	Sci	Prog.	1984;69(273):129–42.CAS		Article		PubMed		PubMed	Central

1.53±0.08*

4.09±0.13

1.48±0.14**

5.60±0.29

4.09±0.13

1.53±0.08**

1.48±0.14**

1.48±0.14**